Результаты поиска по тегу «Публикация» 21 результат

  • Оптоэлектроника на квантовых точках: что повысит эффективность работы с одной из самых перспективных квантовых технологий

    Сегодня любой человек, зайдя в магазин электроники, может увидеть телевизор на квантовых точках. Открытая в восьмидесятых годах прошлого века, одна из самых интересных квантовых технологий в наши дни постепенно добирается до потребителя. В последнее десятилетие благодаря развитию технологий коллоидного синтеза квантовые точки находят все большее применение в создании оптоэлектронных устройств — фотовольтаических элементов, светодиодов и фотоприемников, готовых по ряду свойств потеснить существующие аналоги. Какими преимуществами обладают новые устройства, готовы ли эти разработки выходить из лабораторий в массовое производство и какие задачи ученым еще предстоит решить в ближайшем будущем? На эти и другие вопросы ответила группа исследователей Университета ИТМО в обзорной статье, посвященной новым концепциям и прогрессу в изучении квантовых точек, а также их применению в оптоэлектронных устройствах. Материал опубликован в журнале Королевского химического общества (Великобритания) Journal of Materials Chemistry A.

  • Болезнь Альцгеймера связали с недостатком энергии иммунных клеток мозга

    Международная группа ученых, в которую вошли сотрудники Университета ИТМО, выяснила, почему мутация или отсутствие рецептора TREM2 в иммунных клетках нервной системы повышает риск развития болезни Альцгеймера. Оказалось, что иммунные клетки в этом случае перестают получать питание и начинают «переваривать» самих себя. Свое открытие исследователи описали в журнале Cell.

  • Международная группа ученых улучшила эффективность поляритонного лазера, перспективного для квантовых вычислений

    Международная группа ученых смоделировала и провела эксперимент, в ходе которого удалось реализовать поляритонный лазер с электрической спин-поляризованной накачкой. Это привело к снижению энергопотребления лазера, а также позволило управлять поляризацией выходного излучения. Добиться этого удалось за счет использования магнитных материалов в качестве контактов устройства: при этом электроны, попадающие в лазер, имели предпочтительное направление спина, совпадающие с направлением намагниченности контактов, что и приводило к эффективной спиновой накачке. Поляритонные лазеры очень перспективны как раз за счет того, что для них не требуются высокие мощности. Кроме того, они работают при комнатных температурах. Благодаря этому их можно использовать в портативной электронике, оптических компьютерах, средствах связи. Результаты эксперимента были опубликованы в журнале Physical Review Letters.

  • Жизнь в мире резонансов

    Полвека назад итальянский физик-теоретик Уго Фано опубликовал работу, в которой описал тип резонанса с характерным асимметричным профилем, возникающим в результате интерференции двух волновых процессов. Спустя годы исследование Фано стало одной из самых цитируемых физических работ по итогам XX столетия. Сегодня фундаментальный результат, полученный десятилетия назад, до сих пор остается источником прорывных концепций для теоретиков, экспериментаторов и технологов и лежит в основе множества разработок, уже появившихся и только создающихся учеными по всему миру. Как идеи Уго Фано влияют на современную фотонику, что нужно для создания сверхчувствительных сенсоров и можно ли сделать объект полностью невидимым, об этом и многом другом рассказывают ученые Университета ИТМО, ФТИ имени Иоффе и Австралийского национального университета в обзоре, опубликованном в престижном журнале Nature Photonics. Масштабный обзор содержит не только подробный анализ последних достижений, связанных с резонансом Фано, эта работа помогает существенно расширить кругозор читателя благодаря сравнительному анализу основных типов резонансных явлений, которые наблюдаются в фотонике. Подробнее о работе, перспективах и возможностях использования различных резонансов, а также о том, почему физика не так сложна, как может показаться, ITMO.NEWS рассказал один из авторов работы, заведующий базовой магистерской кафедры фотоники диэлектриков и полупроводников Университета ИТМО Михаил Лимонов.

  • Новые чернила для струйной печати позволят делать светящиеся голограммы и защитят документы

    Химики Университета ИТМО впервые продемонстрировали процесс производства люминесцентных наноструктур с помощью струйной печати. Чернила для печати были получены новым способом, позволяющим добиться значительной устойчивости структур и сохранить высокие оптические характеристики наночастиц. В ходе экспериментов группа исследователей показала, как использовать созданные материалы для производства светящихся голографических покрытий с повышенным уровнем защиты. В отличие от других способов создания голограмм, данная разработка позволит изготавливать индивидуальные полиграфические изделия. Результаты работы опубликованы в журнале Nanoscale.

  • Петербуржцы посоветовали туристам лучшие места через Instagram

    Программисты из Университета ИТМО составили рейтинг мест в Санкт-Петербурге, которые могли бы посоветовать туристам жители города. Ученые разработали компьютерный алгоритм, позволяющий по постам в Instagram найти музеи, кафе, улицы и парки, наиболее популярные среди местного населения. Результаты исследования были представлены на конференции The International Conference on Computational Science и опубликованы в рецензируемом журнале Procedia Computer Science. 

  • Международная группа ученых показала, что кишечная микробиота влияет на иммунный ответ против гриппа

    Международная группа ученых из Университета Вашингтона в Сент-Луисе в США и Университета ИТМО экспериментально доказала, что кишечная микробиота мышей влияет на формирование иммунного ответа организма при заражении вирусом гриппа. Метаболиты, которые образуются в результате деятельности кишечных бактерий, стимулируют выработку интерферона. Это белок, который подавляет размножение вируса. Результаты открытия были опубликованы в журнале Science.

  • Новый чип поставил на поток создание многомерно запутанных фотонов

    Международный коллектив ученых под руководством Роберто Морандотти, профессора канадского Национального научно-исследовательского института в Квебеке и Университета ИТМО в Санкт-Петербурге, разработал оптический чип, способный стабильно генерировать многомерно запутанные фотоны и управлять ими. Рождающиеся частицы находятся сразу в сотне различных состояний, и в перспективе это число можно увеличить на два порядка. В статье для журнала Nature команда демонстрирует, что такая многомерность фотонов упрочняет их связь между собой, а значит, повышает стабильность оптического сигнала.

  • В Университете ИТМО создали камеру с разрешением в квадриллионные доли секунды

    Ученые из Университета ИТМО собрали установку, которая с фемтосекундной скоростью снимает голограммы с мельчайших объектов – например, живых клеток. Новая камера воссоздает рельеф изучаемого образца по искажению лазерного импульса, прошедшего сквозь него, и способна визуализировать даже прозрачные биоструктуры без введения в них контрастных веществ, с чем не справляются электронные микроскопы. Работа опубликована в журнале Applied Physics Letters.

  • Волны вероятности можно использовать в качестве «притягивающего» луча для управления нанообъектами

    О притягивающих  лучах (англ. tractor beams) впервые заговорили еще два столетия назад в научной фантастике: под ними понимался поток излучения, который может передвигать и поднимать различные объекты. Например, тянущий луч часто ассоциируется с инопланетянами, которые с его помощью втягивают на борт своих «летающих тарелок» различные объекты с Земли. Идея, казавшаяся нереальной десятилетия тому назад, стала возможной: ученые по всему миру изобретают разные способы перемещения предметов. Правда, пока реальные тянущие пучки позволяют передвигать лишь наночастицы. Международная исследовательская группа, в состав которой вошел ученый из Университета ИТМО, внесла свою лепту в этот процесс и доказала, что «притягивающими» свойствами обладают и дебройлевские волны (волны вероятности), которые в квантовой механике описывают поток частиц. 

Архив по годам:
Пресс-служба